
 1

Embedded Cross-Development with Eclipse

This technical whitepaper describes how to construct a free or low-cost cross-
development environment based on the open-source Eclipse IDE and GNU

toolsets.

Written by Brian Handley, Sr. Engineer of Macraigor Systems

 2

The Eclipse development environment has become the de-facto industry-
standard environment in which to host embedded development tools. Many of
the traditional embedded tools vendors who used to sell their own proprietary
development tools and environments have embraced Eclipse and ported their
products to run within it to take advantage of the sophisticated, feature-rich
framework provided by the Eclipse IDE.

These tools and environments are powerful, but they can still be expensive. For
projects on a tight budget, it is now possible to use the freely available, open-
source Eclipse IDE along with the open-source GNU tools (binutils, gcc and gdb)
to construct a complete cross-development environment at little or no cost.

However, piecing together all the necessary components to build a system such
as this is not necessarily easy. Eclipse was not originally built to handle cross-
development, or even the C or C++ languages typically used in most embedded
projects. Therefore, a significant amount of effort is needed to get Eclipse to
perform this task adequately. Beyond this, Eclipse does not currently have any
concept of a remote debug connection on its own. If a debug interface such as
JTAG or BDM—or even an Ethernet or serial connection to a target-resident
debug monitor—is used, Eclipse must be reconfigured to handle this situation.
Additionally, the required GNU tools are typically available only in source format,
and they must be built for the particular host and target processor being used by
a project. Getting these tools to build for a particular host-target combination can
be difficult, consuming engineering time that could be better spent on application
development.

This article describes how to construct a free or low-cost cross-development
environment based on the open-source Eclipse IDE and GNU toolsets. The task
can be difficult and time-consuming, and this article also presents the
preconfigured Eclipse projects and pre-built GNU tools offered by Macraigor
Systems to help speed construction.

Required Components

To build a functional, free, cross-development environment, several components
must be obtained and integrated together. The Eclipse development environment
is the framework into which the other necessary tools are integrated. Eclipse
itself includes an editor, project manager and debugger interface. Since the
environment is intended for embedded cross-development, the C and C++
languages must be supported. This requires use of the CDT
(http://www.eclipse.org/cdt/) plug-in for Eclipse. The assembler, compiler, linker
and other code-generation utilities will be provided by open-source GNU code.

 3

If the goal were to develop native applications in C/C++ using Eclipse, then these
tools would suffice. However, for embedded cross-development, a few more
pieces are needed. Eclipse with the CDT plug-in has no concept of using a
remote debug connection in order to connect to an embedded processor. Zylin
AS Consulting (www.zylin.com) offers the open-source Embedded CDT and
another plug-in, which together allow the Eclipse debugger to connect to a
remote target via any debug connection (see the Zylin Plug-Ins section later in
this article). This debug connection is typically a JTAG, BDM, Ethernet or serial
connection. In addition, if a JTAG or BDM connection to the target is needed, a
method must be provided for the GNU Project Debugger (GDB) to communicate
to the target using these interfaces.

The completed development system using a JTAG/BDM target connection is
shown in Figure 1.

Figure 1 Completed Development System Using a JTAG/BDM Target Connection

A discussion of each of the above required components follows.

 4

Eclipse

According to the official Eclipse Web site (www.eclipse.org), the Eclipse
Foundation manages open-source development of “projects [that] are focused on
providing a vendor-neutral open development platform and application
frameworks for building software.” The Eclipse Foundation has created the
Eclipse Platform, which provides a feature-rich integrated development
environment with a well defined interface that allows additional features to plug in
and work seamlessly with the existing code.

Eclipse has rapidly gained favor among embedded tools companies because it
provides a sophisticated IDE into which they can plug their tools and no longer
have to worry about building and maintaining their own proprietary environments.
In addition, the Eclipse Public License allows the creator of derivative works
based on Eclipse to retain their distribution rights, so companies can focus on
their core embedded competencies and still profit from their efforts.

This is excellent news for those trying to put together a free development
environment. It makes available a commercial-quality IDE that has the backing
and support of a large number of both embedded and enterprise-software tools
companies. However, as mentioned earlier, Eclipse by itself provides only a
framework and some generic tools, such as an editor, code/project manager and
debugger interface. In order to construct a cross-development system, several
more packages must be obtained and integrated into Eclipse.

CDT

Eclipse was originally developed in and for the Java programming language, and
the basic framework is still specific to the Java language. Most embedded cross-
development projects still have device drivers, operating system (OS) code and
applications written in C, C++ or assembly language. To make Eclipse
compatible with, and useable for, C/C++, a sub-project called C/C++
Development Tooling was created to build a plug-in that would add these
features to the basic Eclipse framework. This plug-in is available as a free
download from Eclipse at http://www.eclipse.org/cdt/downloads.php.

With the Eclipse framework and CDT in place, the environment is capable of
supporting and enabling code development in C/C++. However this environment
will only work for native application development. For embedded cross-
development, there are still some issues that must be addressed, primarily the
handling of remote debug connections to a target processor. The Zylin Plug-Ins
section discusses this problem further. In addition, an assembler, compiler, linker
and loader are still required for the specific target processor that will be used on

 5

the project. The next section discusses using GNU tools that provide these
utilities.

GNU Tools

The Free Software Foundation makes available free source code for a wide
range of programs and utilities, including a set of tools that together can provide
everything necessary to build, link, load and debug an embedded application.
The combination of GNU binutils (http://www.gnu.org/software/binutils/), the GNU
Compiler Collection (GCC) (http://gcc.gnu.org/) and the GDB
(http://sources.redhat.com/gdb/) provide a fairly complete toolset for building and
debugging embedded applications. These tools can be used on their own for this
purpose. The binutils package provides an assembler, linker, archiver and
several other utilities for code development, the GCC provides the C/C++
compiler, and the GDB allows the code to be downloaded to and debugged on
the target processor.

The downside of using these tools as they are is that there is no graphical user
interface (GUI) and no real integration of the tools. Used by themselves, the tools
basically provide a command-line interface. However, Eclipse with the CDT is
capable of sufficiently integrating these tools into an environment with a GUI so
most of the command-line use of the tools can be avoided.

The other problem with using the GNU tools for code development is that these
tools are generally provided only in source form. Although the tools support a
huge array of various target processors and just about any host OS and
hardware one could imagine, the user usually has to configure and build the
tools. This build process can be a time-consuming, frustrating experience,
especially for someone who has not done it before. Fortunately, Macraigor
Systems provides an alternative to the labor-intensive task of building GNU tools
in-house. This is covered later in this article.

Zylin Plug-Ins

An environment consisting of Eclipse, the CDT plug-in and the appropriate GNU
tools is close to being a functional embedded cross-development system. As
mentioned above, however, Eclipse and the CDT do not support remote target
connections to an embedded processor. They assume that debugging is
occurring on the host machine. In order to download the embedded code from
the host to the target and then connect to a debug agent of some type running on
the target hardware, some changes must be made in the way the CDT handles
debugging.

To address this problem, Zylin AS Consulting, a Norwegian company, has
created and made available Embedded CDT and another small plug-in that

 6

together “understand” and properly handle embedded debugging using the GDB
from within Eclipse. These free plug-ins are available at
http://www.zylin.com/embeddedcdt.html.

An Eclipse Project called the Device Software Development Platform (DSDP) is
now available. This project is specifically aimed at enabling Eclipse to be used for
embedded cross-development so that, at some point in the future, the Zylin
Embedded CDT modifications may become unnecessary. Further information
about the DSDP project can be found at http://www.eclipse.org/dsdp/.

Target Connection

The only missing piece that remains in the integrated cross-development system
is some type of debug communication method to connect the host computer to
the target processor. Traditionally, this connection is usually made via a serial,
Ethernet or JTAG/BDM interface. If a project is using hardware for which a board
support package already exists, it may be feasible to simply run a GDB debug
agent on the target and connect the GDB to it using a serial or Ethernet
connection.

However, for new custom target boards, the interface of choice is usually JTAG
or BDM. These types of debug interfaces are built into most of the more popular
embedded processors including ARM, MIPS, PowerPC and XScale processors,
as well as many others. These interfaces provide a dedicated debug connection
directly to the target processor that has several advantages over using a serial or
Ethernet connection:
• They are built into the processor and typically only require that the processor

is powered and is getting a clock signal in order to work.
• They can be used to write and debug boot code and drivers.
• They do not use any valuable target resources. A serial or Ethernet debug

connection usually requires dedicated hardware for the interface in addition to
using processor cycles and memory for a driver.

To connect a JTAG or BDM interface device to the target using the Eclipse/GNU
environment described above, a debug agent of some sort is required. The GDB
has a well defined back-end interface called GDB Remote that has become a
common standard for connecting the debugger to an embedded processor via a
JTAG or BDM connection. This is usually handled by a proprietary stand-alone
utility that runs on the host and provides a TCP/IP port that will accept a GDB
connection on the front end and connect to the JTAG/BDM hardware device on
the back end. Most vendors of JTAG/BDM interface devices provide a utility for
this type of connection with their hardware.

 7

Figure 2 shows the Eclipse Debug Perspective during a debugging session using
the system described in this article. The target is a Freescale MPC8280
evaluation board and the debug connection is made via a Macraigor Systems
USB JTAG device.

Figure 2 Eclipse Debug Perspective During a Debugging Session

An Easier Way

This article has shown that, using readily available, free, open-source software
tools, it is possible to construct a full-featured, integrated environment for
embedded cross-development. The process of gathering components,
integrating them and—in the case of the GNU tools—building applications from
source is likely well within the capabilities of most embedded software engineers.
However, this process can still be a time-consuming and difficult task, eating into
engineering time that might be better spent writing code for the target hardware.

 8

Macraigor Systems, as a way of promoting and enabling its JTAG/BDM interface
devices, has greatly simplified the task of constructing the integrated
development environment described in this article. Macraigor Systems has
recently made available free downloads of a suite of tools that includes Eclipse,
the Zylin Embedded CDT plug-ins, pre-built GNU tool kits for AMDx86, ARM,
MIPS, PowerPC, XScale, ColdFire/CPU32, and Freescale DSP target
processors and more than 70 example Eclipse projects configured for standard
evaluation boards using various embedded processors. Also available is a
document containing detailed instructions on downloading, installing and testing
the environment with actual target hardware.

The preconfigured Eclipse projects and the pre-built GNU tools, with install
programs for Windows OSs and RPM scripts for Linux OSs, allow a user to
quickly get the complete environment up and running on actual hardware. More
information about these kits and links for downloading the various components is
available at http://www.macraigor.com/Eclipse/.

Macraigor Systems also offers a utility called OCD Remote, which provides a
connection from the GDB to Macraigor Systems’ JTAG/BDM hardware so the
Eclipse/GNU environment can be used with any of the company’s interface
devices.

In conclusion, constructing a free or low-cost cross-development environment
based on the open-source Eclipse IDE and GNU toolsets is possible, though
time-consuming and very challenging. Macraigor Systems has simplified the
process by providing downloads that help facilitate construction and lower the
barriers to achieving the sophisticated cross-development environment
developers are seeking today.

Macraigor Systems LLC and OCD Remote are trademarks or registered trademarks of Macraigor
Systems LLC in the U.S. and/or internationally. Eclipse is a trademark of Eclipse Foundation, Inc.
All other trademarks and products are the property of their respective owners.

